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Abstract

The papers in this symposium agree on several points. In this paper we sort through
some remaining areas of disagreement and discuss some of the practical issues of time
series modeling we think deserve further explanation. In particular, we have five points:
(1) clarifying our stance on the GECM in light of the comments in this issue; (2)
clarifying equation balance and discussing how bounded series affects our thinking
about stationarity, balance, and modeling choices; (3) answering lingering questions
about our Monte Carlo simulations and exploring potential problems in the inferences
drawn from long-run multipliers; (4) reviewing and defending fractional integration
methods in light of the questions raised in this symposium and elsewhere, and (5)
providing a short practical guide to estimating a multivariate ARFIMA model with or
without an error correction term.



Introduction

The comments of Keele, Linn, and Webb (2015, KL&W hereafter), Freeman (2015), Helgason

(2015), and Esarey (2015) on the issues brought up in our paper Error Correction Methods

with Political Time Series are extremely useful. In particular, this symposium provides some

much needed discussion about relating different types of time series to various modeling

strategies. Our main goal in Grant and Lebo (2015, G&L hereafter) is to point out under-

appreciated problems with the General Error Correction Model (GECM). While not the

authors’ intent, many have interpreted Taking Time Seriously by DeBoef and Keele (2008) as

providing carte blanche for when the GECM is appropriate. We see applying and interpreting

the GECM as not nearly as simple a task as has been assumed. Our discussions of bounded

series, equation balance, and fractional integration methods also sparked useful comments

and we appreciate the opportunity to clarify our thoughts on these issues.

The papers in this symposium agree on several points. Here we clarify our arguments,

sort through some remaining areas of disagreement, and discuss some practical issues for

time series modeling. In particular, we (1) clarify our stance on the GECM in light of the

comments in this symposium; (2) discuss how bounded series affects our thinking about

stationarity, equation balance, and modeling choices; (3) answer lingering questions about

our Monte Carlo simulations and explore potential problems in the inferences drawn from

long-run multipliers; (4) review and defend fractional integration methods, and: (5) provide

a short practical guide to estimating a multivariate autoregressive fractionally integrated

moving average (ARFIMA) model with or without an error correction term.

The General Error Correction Model in Practice

To summarize the main points of G&L: we view the GECM as extremely limited in its ap-

plicability – as we say in the abstract: “the model is treated as perfectly flexible when, in

fact, the opposite is true.” Also, we see the use of the GECM in political science as rife with
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errors. The GECM may provide correct inferences when data are exactly appropriate and

researchers are careful in their post-estimation calculations and interpretations. Although

we did not investigate every GECM application, at least one of these critical mistakes was

made in every paper we did read: estimating unbalanced equations, using a unit-root depen-

dent variable with the wrong critical values, improper interpretation of the ECM and beta

parameters with non-unit-root data, or using bounded series with no attention paid to the

consequences. Our article re-analyses only five articles, but in this exchange we did not see

a defense of any GECM results published by a political scientist.

Our paper emphasizes that researchers have generally not been careful with the GECM

and our simulations, in part, demonstrate the consequences of making common errors. The

pattern we see in the literature is the misuse of D&K’s Equation 5:

∆Yt = α0 + α∗
1Yt−1 + β∗

0∆Xt + β∗
1Xt−1 + εt (1)

D&K and KL&W explain the equivalence of the ECM to the ADL:

Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + εt. (2)

We recognize the mathematical equivalence between the ADL and the GECM but the es-

timated parameters of the two are not interchangeable on a one-to-one basis; the equivalence

comes through α∗
1 = (α1 − 1), β∗

0 = β0, and β∗
1 = β0 + β1. In the output from the GECM

equation a researcher will often have at least one additional significant estimate despite the

lack of any significant temporal dynamics. Table 5 in G&L shows a simple bivariate example

where the ECM looks strongly significant even though, as KL&W note, this indicates the

lack of any long-run relationship between Y and X. The significance of the parameter is

deceiving and has generally fooled researchers. In practice, α∗
1 is treated as though the data

have unit-roots and are cointegrated – reports of strong error correction appear frequently.

Additionally, the GECM adds two ADL parameters together (β0 +β1) while the standard
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errors are not additive. G&L’s Table 5 shows the increased risk of Type I errors for X

when using the GECM rather than the ADL. Researchers usually skip the post-estimation

calculations that may only make their results look weaker and less interesting. Our paper and

examples such as our Table 5 demonstrate the inferential mistakes made when one simply

estimates D&K’s Equation 5 (Equation 1 above) and takes the output at face-value.

KL&W push us and future researchers to focus on the long-run multiplier (LRM) as

the key quantity of interest and they provide useful clarification on the steps one should

take post-estimation. We discuss below why the LRM can also be problematic but we can

note here that Table 10 in G&L shows the long-run multipliers for Shark Attacks and Beef

Consumption to be significant predictors of Supreme Court Liberalism and Table 13 has 7 of

10 significant LRMs for our nonsense series’ effects on public mood. Researchers, reviewers,

and journal editors should be aware of these possibilities.

KL&W say: “We argue that the results in the Grant and Lebo replications stem from

inadequate sample sizes that make it difficult to conclusively use any time series model.”

We share their worry that researchers are trying to squeeze too much out of small sample

sizes – the GECM would have them estimate short- and long-term effects and then compute

long-run multipliers. We also note that if Keele and Kelly (2006) are correct that there must

be 250 observations for any diagnostic tests to effectively work with a lagged DV, then the

use of the GECM with most political time series means we cannot tell whether our models

are properly specified. This is yet another serious drawback.

Error correction is an interesting phenomenon and makes for a good story when it is

found; e.g. macro-level variables that seemingly move in harmony over decades. However, if

data do not contain unit-roots, a researcher who claims to have found strong error correction

has most likely only found confirmation of some form of stationarity – there may be no

effects of the Xs at all. Also, the very concept of equilibrium is different with non-unit-

root variables. If both Y and X are mean stationary then, in the long-term, they are both

returning to their respective means. What would error correction be in that case and why
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should we be so interested in it? And, if data are bounded, then inferences are muddied

further. In all, with stationary series, we doubt the value of a model that differences them,

eats up degrees of freedom, potentially confounds diagnostic tests, and opens so many doors

for misinterpretation. For these and other reasons, if one is not going to use a pre-filtering

approach, we recommend the ADL for stationary (but not fractionally integrated) series.

Equation Balance, Bounded Variables, and Modeling Choices

One point of agreement among the papers here is that equation balance is an important and

neglected topic. One cannot mix together stationary, unit-root, and fractionally integrated

variables in either the GECM or the ADL.1 Data of interest do not usually all line up as

similar in their univariate properties. Thus, balance is hard to come by without transforming

some series. Despite general agreement, in practice there are reasons why we might still

disagree about whether a particular equation is in or out of balance.

First, a researcher who shares KL&W’s concern that fractional integration techniques –

including the problems of estimating d – are too unreliable is left to choose between models

that difference series by one or not at all. For example, KL&W support using FI techniques

when one has confidence that data are FI, but say: “...drawing inferences about the existence

and extent of fractional integration is problematic in sample sizes typically seen in political

science...” We provide counter-arguments below but, for now, the important point is that

this view leads one back to considering the question of integration as a 0/1 dichotomy.

Once locked into a dichotomous choice authors then consider whether or not their series

contain unit-roots. Missteps here are easy if we diagnose the properties of our series in terms

of some population instead of the sample in hand. This approach has its proponents, for

example Williams (1992) says: “Classical inference is, as we all know, based on inferring

1Freeman says: “...GL’s recommendation to “set aside” unbalanced equations are a bit overdrawn” and
that models can be estimated with unbalanced data so long as nonstandard distributions are used. The
recommendation Freeman cites is in specific reference to the cointegration test implied within the GECM.
When Y and X are integrated but are not cointegrated with each other then the (Yt−1 − Xt−1) vector of
the GECM will be non-stationary, the equation will be unbalanced, and α1 will be biased. In such a case
the ECM is not a useful model although one could still regress ∆Yt on ∆Xt. More generally we view using
unbalanced data as acceptable if one uses a pre-whitening approach or follows the advice cited by Freeman.
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something about a population from a sample of data. In time series, the sample is not

random, and the population contains the future as well as the past.” This could lead a

researcher to consult textbook definitions of stationarity such as KL&W offer: “A weakly

stationary time series is one for whom the mean, variance, and covariance are time invariant.”

It is at this point that the boundedness of so many political time series poses major

problems. For one, a series that has both upper and lower limits will have finite variance

and will have some long-term mean to which it will eventually revert.2 These facts are

frequently cited by researchers as evidence that their bounded series cannot have unit-roots

and must by definition be stationary. Stationarity tests are often eschewed as authors simply

point at the boundedness of their variables.3 Second, when stationarity tests – especially the

Dickey-Fuller test – are administered to bounded data they are biased towards concluding

stationarity (Cavaliere and Xu 2014). These missteps might lead a researcher to mistakenly

conclude a bounded series is stationary.

In G&L we point out the prevalence of bounded political times series – 13 of 13 dependent

variables in our applied examples – and we investigate some of the statistical problems they

create. But we only briefly discuss the issues they pose for diagnosing data.

To elaborate, a researcher using bounded series might accept the argument that bounded

series cannot contain unit-roots or she might accept incorrect results from biased stationarity

tests. Doing either for all her series would lead to the conclusion that all are stationary. From

this, several assumptions would follow including: a) the equation is balanced, b) cointegration

is not required for an error-correction specification, and c) standard normal critical values

are appropriate. In short, a researcher who dismisses fractional methods makes decisions in

a 0/1 world and, if she accepts the finite variance argument or faulty test results, she will

2For example, if we had 10,000 months of presidential approval data we would see it revert continually to
some stationary mean – a graph on a page might look like it came from a Richter Scale machine. But over
the period of data we actually have – 650 months at best – the series measures as long memoried, fractionally
integrated, or a unit-root (e.g. Lebo and Cassino 2007).

3For examples, Williams (1992, p.230) says: “Presidential Approval also is bounded between zero and
one, placing an important theoretical limit on its dynamics.”; Ehrlich (2007) states: “However, given that
tariffs are bounded, unit-roots are not technically possible. Instead, tariffs are probably near-integrated.”
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dismiss the possibility of I(1) – all bounded series will be assumed to be not-integrated and

therefore all equations that include them are assumed to be balanced.

So, although we all agree that equations should be balanced, a theoretical appeal to the

asymptotic properties of time series can lead one to assume that series are stationary and

thereby forgo closer examination of equation balance. For example, D&K’s 2008 article is

meant to apply to stationary data but in their two applied examples the dependent variables

are the effective tax rate on labor and Congressional Approval, both bounded.4 Independent

variables include the structural unemployment rate and the Index of Consumer Sentiment,

respectively – all bounded. Perhaps based on the “bounded series cannot contain unit-roots”

argument, stationarity tests are not presented, the series are assumed to be stationary, and

the standard normal distribution is used for ECM critical values.

We see the “bounded series cannot contain unit-roots” argument as a wrong turn on the

way to properly modeling dynamic relationships. For a stylized example, Figure 1 presents

the Trade Balance and Unemployment Rate for the planet Caprica. The Trade Balance

shown on the left is unbounded – it can theoretically approach positive or negative infinity

and the series will eventually exhibit infinite variance. The Unemployment Rate shown on

the right, however, has both upper and lower bounds giving it finite variance, i.e. it fails the

textbook definition for a unit-root. However, aside from the variable names and the scale

on the Y-axis, the two series are identical. What is a researcher to do? Should she cite the

asymptotic properties of the series and treat them differently?

Our approach is a practical one – to difference or not to difference is the critical empirical

choice. Analysts should deal with the properties of the data sample they have and not make

arguments about asymptotics (Durr 1992). If autocorrelation exists in the data we have, it

can affect estimates and requires attention and careful modeling choices.

In the Caprican case, the two series are identical, have identical patterns of autocor-

relation, and should be dealt with in the same way to avoid faulty inferences. We advise

4If this year’s tax rates are last year’s tax rates unless changed by legislation they essentially contain
unit-roots by definition.
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Figure 1: Trade Balance and Unemployment Rate for Caprica

Panel 1: Caprican Trade Balance
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Note: Trade Balance is an unbounded variable. The Unemployment Rate is bounded between 0 and 100.

setting aside the boundedness issue as a decision-maker. Rather, decisions should be made

based on rigorous testing of the data in hand using unit-root tests and direct estimates of

the fractional integration parameter in (p, d, q) models in addition to careful study of ACF

and PACFs before and after any type of differencing. Researchers often only consult the

residual autocorrelation of the entire model – an unreliable test when including a lagged

dependent variable with a limited number of observations.5 This does not mean that the

model’s estimates are free from autocorrelation problems. Researchers must be careful to

see that their inputs into the model are safe in order to trust the outputs.

Most importantly, we advise researchers to make their fundamental modeling question:

“What needs to be done to the data to ensure a trustworthy hypothesis test?” This means

being wary of the spurious regression problems in unfiltered time series when they contain

unit-roots (Granger and Newbold 1974), are near-integrated (DeBoef and Granato 1997), or

are fractionally integrated (Tsay and Chung 2000). This can be avoided if the autocorrelation

5This is noted by KL&W in reference to the findings of Keele and Kelly (2006) - in order to “reliably
detect autocorrelation in the residuals of regression models with LDVs....one needed sample sizes of between
250 and 500 observations before these tests had much power.”
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of each series is dealt with through pre-filtering. This also allows us to take disparate series

and reduce them to a common form – stationary deviations from deterministic factors – and

leaves us with a balanced equation and reliable estimates.

We also advise researchers to favor the “What needs to be done...?” question over the

typical “Are my data stationary?” question.6 KL&W comment on our paper that “They

reject the notion that most political data is stationary.” This leads us down a complicated

rabbit hole – stationarity is not an either/or question. There is mean, variance, and covari-

ance stationarity to consider. A mean stationary series could be white noise, autoregressive,

near-integrated, fractionally integrated with d < 0.5 (mean reverting with finite variance), or

fractionally integrated with d > 0.5 (mean reverting with infinite variance). Each type poses

its own challenges. Left unanswered by the comments in this symposium: if an equation

includes two or more of these types of stationary series is it balanced?

Eschewing testing and filtering because series meet a broad definition of stationarity are

common practices in the literature. Asking and answering “Is this series stationary?” is

simply insufficient in deciding how to proceed with univariate and multivariate modeling.

On Monte Carlos

Questions remain about the simulations we ran in G&L (746 of them) and about those we

did not run.7 The various concerns with our simulations are that we he have too many

independent variables, our series are too short, our equations are unbalanced, and that we

are dealing with the wrong quantities of interest. We respond to these critiques next.

Overfitting and Balance

One concern raised is that our models are overfit - that too many variables were included

in the Monte Carlo simulations given the short length of the series. While we do include

6A somewhat better question than “are my data stationary?” is “does this series contain a unit-root?”
If it does not, there are many possibilities to explore.

7The comments of KL&W, Helgason, and Esarey each provide useful simulations of their own. Still, there
are many unexplored questions that further exercises might answer. The provision of code by the authors
in this symposium should help spur further research.
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up to five independent variables in some simulations, our results also highlight problems

with simple bivariate models. In fact, every set of simulations in G&L includes results from

bivariate models and our Table 6 provides Type I error rates based solely on bivariate models.

Additionally, our Supplement provides results from bivariate models for near integrated

data in Tables G-1 (T=60) and G-6 (T=150) as well as fractionally integrated data in

Tables H-3 (T=60) and H-8 (T=150). Tables in our Supplement provide multiple types of

simulations but in each one Model 2 (middle row) provides results from perfectly balanced

models – (ρy = ρx) for near integrated models or (dy = dx) for fractionally integrated models.

The problems we identify with the GECM still exist in simple bivariate balanced models.

Note also that the only Table in G&L that uses series bounded by construction is Table 3.

Thus our simulations do not allow for the additional possibility that bounds and tests of

series with bounds would lead a researcher astray.

Series Length & Quantity of Interest

Two somewhat related critiques of the simulations in G&L are that (1) the series are too

short, and (2) we fail to estimate the significance of the long-run multiplier (LRM) – the

quantity of interest that researchers should be most interested in.

Our intention was to investigate the GECM as we saw it commonly being used in political

science – with a small number of observations, without regard to equation balance or tests of

the orders of integration, and using significance tests of the GECM parameters to evaluate the

model’s key hypotheses. Our approach for choosing replications, simulations, and quantities

of interest were informed by these factors. Following the applied papers we read we did give

short shrift to the LRM and we address that omission here.

Table 1 presents simulations of bivariate GECMs with increasing numbers of observations.

As with the data types in G&L’s Table 6, the specifications were based on at least one

statement made in DeBoef and Keele (2008) that the GECM should be favored when data

are near-integrated. The quantity of interest is the LRM and the standard error is estimated

using the variance equation provided by DeBoef and Keele (2008, p.192): ((1/b2)Var(a) +
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(a2/b4)Var(b) − 2(a/b3)Cov(a, b))1/2.

Table 1: Rejection Rates for H0 of GECM (LRM = 0) with Near-Integrated
Data

ρx

T=60
ρy 0.75 0.80 0.85 0.90 0.95 0.99

0.75 12.9 13.5 13.8 14.2 15.5 17.7
0.80 12.4 13.4 14.0 14.7 17.1 19.7
0.85 12.6 13.4 15.3 16.0 19.4 21.2
0.90 12.2 13.6 15.3 17.4 20.4 23.5
0.95 10.6 12.4 14.8 18.7 21.3 24.2
0.99 10.2 11.6 13.6 16.3 22.4 24.2

T=250
ρy 0.75 0.80 0.85 0.90 0.95 0.99

0.75 10.1 9.2 9.9 10.3 11.6 11.7
0.80 9.6 9.6 10.3 10.5 12.0 11.9
0.85 9.6 9.2 10.1 10.7 12.0 12.7
0.90 9.7 8.7 9.8 10.7 13.1 14.3
0.95 6.9 7.5 8.4 10.3 13.2 16.0
0.99 4.1 4.3 5.7 7.6 12.3 20.2

T=500
ρy 0.75 0.80 0.85 0.90 0.95 0.99

0.75 9.7 10.3 10.7 12.5 11.7 12.4
0.80 9.6 10.1 10.8 12.3 12.4 12.4
0.85 9.6 10.0 11.0 12.4 11.3 13.0
0.90 9.3 9.8 10.9 12.5 12.5 13.7
0.95 8.1 8.8 9.6 11.4 13.0 14.7
0.99 3.8 4.5 4.7 6.2 9.6 18.5

Note: Percentage results based on 1,000 simulations.T=60. GECM model
contains one IV.
GECM: ∆Yt = α0 + α∗

1Yt−1 + β∗
0∆Xt + β∗

1Xt−1 + εt.

Table 1’s results do indicate that inferential errors with the GECM’s LRM can be reduced,

if not eliminated, when series are longer. With 60 observations there is a significant threat

of Type I errors, but with 250 observations the threat of inferential errors is somewhat

alleviated, but still too high in many situations. However, in comparison to the results of

Table 6 in G&L, it is noteworthy that relying on the significance of the LRM rather than

the joint hypothesis test of the α∗
1 and β∗

1 parameters does lead to an increased rate of Type

I errors. This occurs because, first, a joint hypothesis test of α∗
1 and β∗

1 requires passing two

significance tests, one of which is two-tailed, whereas the significance of the LRM is based on

one parameter’s one-tail test.8 Second, because the standard error for the LRM is calculated

8As KL&W argue, “The LRM can be statistically significant even if individual terms in the regresssion
model are not.”
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using an equation that provides the asymptotic approximation of the variance, we would

expect Type I errors to be biased with smaller samples.9 This is evident in the discrepancy

of Type I error rates when comparing T of 60 and T of 250. With smaller samples, one is

likely to overstate the significance of the LRM.

While longer samples will reduce Type I error rates when estimating the GECM with

near-integrated data, Table 2 shows the opposite is true with fractionally integrated data –

with FI data longer series pose greater problems and we are more likely to commit Type I

errors. The increasing Type I error rate occurs whether we use a joint hypothesis test on the

GECM’s α∗
1 and β∗

1 parameters or if we look only at the estimated LRM using the variance

formula provided by DeBoef and Keele (2008). This is yet another reason why proper pre-

testing is crucial. Note that these results come from perfectly balanced, bivariate models of

unbounded series and, like Table 1 have length up to T=500.

Table 2: Rejection Rates for H0 with Fractionally-Integrated Data

H0A: LRM = 0
dy = dx

T 0.20 0.30 0.40 0.50 0.60

100 9.5 11.4 14.8 17.7 20.0
200 11.1 15.2 20.2 25.3 26.4
300 12.2 15.8 21.1 24.0 28.9
400 13.7 17.7 22.5 27.0 32.4
500 13.6 18.6 26.1 31.3 34.8

H0B: α∗
1 = 0 & β∗

1 = 0
dy = dx

T 0.20 0.30 0.40 0.50 0.60

100 5.6 6.9 8.3 10.2 10.8
200 5.3 8.1 12.4 14.6 17.5
300 6.5 8.8 13.5 17.6 19.1
400 7.9 10.5 14.8 18.8 21.3
500 7.0 11.4 17.1 23.3 25.1

Note: Percentage results based on 1,000 simulations. H0A: one-tail significance test.
H0B: β∗

1 uses two-tail significance test. GECM model contains one IV.
GECM: ∆Yt = α0 + α∗

1Yt−1 + β∗
0∆Xt + β∗

1Xt−1 + εt.

These results are interesting for several reasons. First, because they are FI, the series

9Esarey (2015) employs the Bewley transformation which is useful for the LRM but was not used in the
articles we read or replicated. When LRMs are used at all the usual course is to estimate it and its standard
errors with the variance equation in DeBoef and Keele (2008, p.192). The Bewley method entails estimating
a second equation to directly estimate the LRM and its variance. This should cost the GECM points in
terms of “ease of use.”
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are likely to appear stationary in simple tests. For instance, with a d = 0.4 and T = 100, a

standard Dickey-Fuller test fails to reject the null of a unit-root 99.9% of the time in 10,000

tests. An augmented Dickey-Fuller with 4 lags fails to reject 76% of the time. But if we

assume that a d = 0.4 series is stationary, we are going to greatly overstate the significance

of our model and the error rate will increase with the number of observations. Second, this

increasing error rate with longer T is the exact opposite of what occurs with near-integrated

data. Assuming data are NI when they are FI will cause problems with the GECM. And

finally, just as we saw in Table 1, when comparing the Type I errors by the type of hypothesis

test used, we find a higher error rate when relying solely on the long run multiplier.

Fractional Integration Methods

KL&W (page 16) say: “GL suggest that much of the data in political science are charac-

terized by fractional integration.” Our thoughts here are broken into two parts: fractional

integration as a property and ARFIMA modeling as a solution.

First, yes, we think that fractional integration is prevalent in political time series. The

theoretical arguments and empirical findings of Box-Steffensmeier and Smith (1996, B-S&S

hereafter) are convincing as explanations for the properties of time series created by aggre-

gating individual-level units. As B-S&S explain, Clive Granger’s aggregation Theorem shows

that when individual units are heterogeneous in their degree of autocorrelation, an FI time

series results when they are aggregated (Granger and Joyeux 1980). Theoretically, we expect

heterogeneity in the electorate in terms of how opinions are remembered among the public

(Converse 1964; Key 1966; Zaller 1992). As B-S&S demonstrate, a dichotomous approach

to stationarity is a mistake with public opinion data and series like Macropartisanship have

values of d between 0 and 1. In the 19 years since its publication The Dynamics of Aggregate

Partisanship remains largely unchallenged on empirical or theoretical grounds.10

10For example, scholars have not countered by claiming the electorate is homogeneous in the way voters
use past information to inform present opinions. For a public opinion series to be near-integrated it would
mean that all voters have the same strong memory of their past opinions and revert back to their underlying
tendency in a homogeneous way.
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Many subsequent empirical studies of opinion data have found series to be fractionally

integrated as well (see, e.g., Byers, Davidson, and Peel 2000; Lebo, Walker, and Clarke 2000;

Box-Steffensmeier, De Boef, and Lin 2004). More widely, it is difficult to think of political

time series that are not aggregates of individual-level processes (Gil-Alana 2003). Granger’s

Theorem seems applicable to a wide array of data such as yearly party unity in Congress

(Lebo, McGlynn, and Koger 2007) or yearly decisions on the Supreme Court (Lanier 2011;

Hendershot, Hurwitz, Lanier, and Pacelle 2012).

Closely tied to Granger’s Representation Theorem, the expectation of fractional inte-

gration is also reasonable when a time series is comprised of the summation of stochastic

shocks that survive for varying degrees of time (Parke 1999). Similar to the aggregation of

heterogeneous process, if and when a limited number of shocks survive for long periods of

time, the underlying aggregate process may be fractionally integrated. Parke (1999) demon-

strated this “error duration representation” with the aggregate survival of U.S. firms over

a set period of time as justification for the expectation that aggregate unemployment was

a fractional process. Grant (2015a) uses the same process to hypothesize that American

policy development as well as domestic spending are fractionally integrated processes, and

the same theorem could also be used to explain the finding that the size of the Executive

Office of the President is a fractionally integrated process (Dickinson and Lebo 2007).

Freeman (p. 6) states that “...GL are convinced that most political time series are frac-

tional integrated and that unit-roots are rare...Put simply, we do not yet have the evidence

to back up such claims” but he provides neither counterarguments nor citations for why all

this evidence is insufficient or in dispute.

KL&W are in agreement with us that when data are fractionally integrated and one has

good estimates of (p, d, q) ARFIMA models are appropriate and useful. However, KL&W as

well as Esarey (2015) have doubts about estimating d. While we might estimate a (p, d, q)

model and find a (0, d, 0) model with 0 < d < 1 to fit well, they would be concerned that the
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true data generating process might be something else.11 In addition, sorting out the exact

(p, d, q) model becomes more of a concern as series get shorter – the replications shown in

G&L use data that are quite short.

In response, we note that there is more than one way to estimate these parameters. The

method that KL&W choose, the time-domain exact maximum likelihood (EML) of Sowell

(1992) may be the estimator favored by Stata, but it suffers from a well known and persistent

negative bias (see, e.g., Li and McLeod 1986; Cheung and Diebold 1994; Hauser 1999).

Other estimators fare much better. For (0,d,0) models12, semiparametric estimators such

as the local Whittle of Robinson (1995), or the log periodogram regression (LPR) model of

Geweke and Porter-Hudak (1983) are both unbiased and provide reliable estimates of the d

parameter with sample sizes as low as t of 40. If one wishes to estimate d using parametric

methods, the frequency domain maximum likelihood (FML) estimator dominates the EML

estimator in terms of bias and RMSE. Comparisons of various estimators with various types

of (p, d, q) series – primarily with longer series – exist and the benefits of using the FML

estimator have been demonstrated with longer time series, most recently by Nielsen and

Frederiksen (2005). The ability to reliably estimate the (p, d, q) was investigated again by

Grant (2015b) and the FML dominated the EML even with short time series. In particular,

the FML is reliable in avoiding Type I errors with respect to FI.13 Freeman (p.5) says G&L

“paper over the problem of estimation uncertainty” with respect to d. We are concerned

about how best to estimate d but we see the mistakes that might be made estimating d

as much smaller than the mistakes made when choosing the wrong multivariate model for

11This is a critical and sticky point to overcome. Despite this symposium and decades of time series work
in political science, there is still a lack of trust in diagnostic tools and thus a lack of consensus on how to
diagnose the univariate properties of a given time series.

12Most ARFIMA work in political science has found that series are well described as (0, d, 0) with d > 0.5
(e.g. Byers, Davidson, and Peel 2000). This implies that the simulations in the symposium using (1, d, 0)
models are less useful. Of course, KL&W might well argue that a (1, d, 0) series is easily mistaken for a
(0, d, 0) series. This is another sticky point. Note also that Box-Steffensmeier and Smith (1998) finds some
series to be (3, d, 3) but this was due to a coding error in the diagnostics of OX.

13For now, Stata only allows use of the inferior EML estimator. Both Robinson’s and Geweke’s estimators
are available in RATS. A wider array of fractional methods may also be found in either R or Matlab. R is
open source. Economists using fractional methods are generally quite generous in sharing their Matlab code.
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fractionally integrated data.

Second, yes, we think that ARFIMA modeling is a useful, flexible, and underused tool.

Estimating a (p, d, q) model and then filtering out the noise model is a well known technique

that relies on the logic first set out by Box and Jenkins (1976) and has been shown to be a

reliable way to control for autocorrelation when data contain unit-roots or are FI (Hosking

1981; Lebo, Walker, and Clarke 2000; Tsay and Chung 2000). The choice of ARFIMA models

can follow theoretical arguments in the literature, investigations of ACF and PACFs, and

estimates of (p, d, q) models. In terms of equation balance, ARFIMA methods can impose

balance within an equation and allows one to estimate relationships between disparate types

of series.

Further, choosing ARFIMA is based on weighing the potential mistakes one could make

from using fractional differencing when one should not14 versus assuming a series requires

no differencing when it does. If a variable is truly fractionally integrated but a researcher

differences by either one or not at all – essentially rounding to the nearest integer – the ACF

of the series used for modeling will be problematic and spurious regressions can follow.15

There is no evidence we know of that a bigger error is made when one is too quick to use

ARFIMA methods rather than too slow. Even if our estimate of d is off the mark by 0.1,

this is a benign mistake by comparison.

Again, we see the fundamental question as: What do I need to do to get a trustworthy

hypothesis test? We need to be sure our findings are not due to autocorrelation. Otherwise,

nothing that comes after that is useful. Nevertheless, more work on effectively diagnosing

time series – especially short ones – and understanding what consequences there might be

for over-using ARFIMA models would be worthwhile.

14Such as having a complicated ARMA structure as the true DGP but imposing a (0, d, 0) model.
15Helgason (2015) asks this critical question in relation to KL&W’s claims: “However, in their simulation

analysis they do not provide a comparison with the most relevant counterfactual: Namely, whether assuming
that data is stationary or integrated while it is actually fractionally integrated is preferable to employing an
uncertain estimate of fractional integration and proceeding accordingly.”
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Building a Multivariate ARFIMA Model – a Brief Practical Guide

Although political scientists have been acquainted with fractional integration since B-S&S’s

The Dynamics of Aggregate Partisanship, FI methods like ARFIMA have not been as widely

employed as the GECM. Among the reasons for this are worries about the ability – especially

in small samples – to accurately estimate the FI parameter, the complications of estimating

the model, and the difficulty of interpreting the results. We dealt with some of these questions

above but provide here a brief practical guide for using some FI methods.16

An initial question is: how long are your series? Estimating a multivariate FI model with

fewer than 50 time-points is perhaps dicey. Statistical packages will still provide estimates of

d and will allow fractional differencing, but the error bands around those estimates may get

uncomfortably large. On the other hand, with 50 or more time-points you should be able to

carefully proceed.17

Next, assess the univariate properties of each time series. An essential step here is to

simply think about the construction of each series – sometimes this can tell you all you need

to know. For example, Segal-Cover Scores (1989) are based on editorials written during a

Supreme Court justice’s nomination process. Casillas, Enns, and Wohlfarth (2011) use the

Court’s yearly median score as a measure of its ideology. If the Court does not change in

a year, its score is what it was the previous year. If the Court changes, the new median

score is updated. This is unit-root behavior regardless of the fact that Segal-Cover scores are

bounded between 0 and 1 and regardless of what test statistics might show. Other examples

of unit-roots by construction are cumulative battle deaths – sometimes used in studies of

leadership approval (e.g. (Mueller 1973)) – and yearly tax rates that are usually changed

only by legislation (Swank and Steinmo 2002; DeBoef and Keele 2008). It is possible that

stationarity tests will disagree but they might be doubted given what you know about the

16Annotated code in RATS, Stata, and R as well as data examples are available at:
https://sites.google.com/a/stonybrook.edu/matthew-lebo/about/resume/papers

17This guide assumes data are simply long time series, that is, not indexed by individuals. If data are
in panels or repeated cross-sections multilevel models can be estimated with ARFIMA filtering (Lebo and
Weber 2015).
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construction of your data.18

Likewise, some time series by their construction may be obviously stationary, particularly

those that are first-differences of unit-root series. Examples include GDP growth, the change

in the number of Democrats in the House of Representatives, and the daily change in stock

indexes. Such series should be investigated for short-term dynamics but are stationary.

Other series may by their construction lead you to expect fractional integration. Following

B-S&S’s arguments, monthly and quarterly public opinion series are likely cases. This does

not mean we should forgo a full array of testing for approval measures and public opinion

series such as consumer sentiment, but our initial suspicion should be to expect FI.

The next step is to visually inspect graphs of the series and their corresponding ACFs and

partial ACFs. An inspection of the raw series might reveal coding errors, major interventions,

or structural breaks that require some attention.19 For ACFs and PACFs, the second chapter

of Enders (2004) is a good source for studying common patterns in series with AR and MA

processes. Our Figure 2 in G&L shows the tell-tale pattern of a fractionally integrated series

– an ACF in which the decline is not exponential and correlations are significant at longer

lags. KL&W discuss the difficulties in properly diagnosing time series, especially with short

samples, but a) seeing an ACF with a long tail and/or b) seeing a significant MA parameter

in a differenced version of a series are both strong indicators that FI is present.

After those steps you should have a good sense of what to expect from stationarity and

unit-root tests. Testing remains important and the framework laid out by B-S&S provides

a good array of complementary tests – Dickey-Fuller, Variance Ratio, KPSS, and direct

estimators of the FI parameter, d. As noted above, among the many estimators of d the

18E.g. if we use the cumulative number of U.S. casualties in the Vietnam War we will have a string of
zeroes in the period before the war begins and a string that remains at the total casualty count after the
war has ended. The lengths of these strings will vary based on the scope of our study but the nature of the
series does not change. Stationarity tests will give different results with different time periods.

19Freeman (p.5) states “However GL say nothing here about how (if) structural change complicates tests
for fractional integration.” Young and Lebo (2009) investigates the question of structural breaks in political
data and expects them to be quite rare – we often see major movement in time series, but a structural break
implies a new and persistent equilibrium level. They also show that estimates of d are not easily biased by
such breaks if they do occur.
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frequency domain estimators offer generally unbiased estimates. The estimates of semi-

parametric frequency domain estimators such as the local Whittle (Robinson 1995) and log

periodogram regression (Geweke and Porter-Hudak 1983) are unbiased with (0, d, 0) series

and can be easily obtained with any statistical software – although Stata does not allow

fractional differencing with them. Should the researcher be interested in estimating full

(p, d, q) models, the frequency domain maximum likelihood estimator will dominate the time

domain maximum likelihood estimator of Sowell (1992) (see Nielsen and Frederiksen 2005;

Grant 2015b).20

At this point in the process you should have decided on the appropriate (p, d, q) noise

model for each variable. If all of the variables are similarly stationary and not fractionally

integrated, then the ADL model is appropriate. If all are unbounded and contain unit-roots,

then one could test for cointegration and, if found, use the GECM. But if the variables are

of different orders of integration then models like the ADL and GECM cannot be used since

they will be out of balance.

As mentioned, FI methods allow us to create a balanced equation from dissimilar data.

By filtering each series by its own (p, d, q) noise model, the residuals of each can be rendered

(0, 0, 0) so that you can investigate how X’s deviations from its own time-dependent patterns

affect Y ’s deviations from its own time-dependent patterns. Using ARMA, ARIMA, or

ARFIMA filters for each variable as appropriate, every series can be reduced to a common

and balanced level of integration – 0. After filtering the series that require it – i.e. not those

rare ones that began as white noise – we recommend looking again at graphs of the filtered

series and their ACFs and PACFs. No significant autocorrelations should remain. If any

do, it is a sign that the series has been filtered incorrectly. For example, applying whole-

differencing to a fractionally integrated series will create an over-differenced series likely to

contain a significant MA parameter (Dickinson and Lebo 2007).

Next, with pre-whitened versions of each series you can estimate a regression for short-

20Because Stata only offers the time domain parametric method, we recommend using either R or Matlab
for work on fractional integration.
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term effects. Since all the series have had their deterministic components filtered out, all

are now (0, 0, 0) and the equation will be balanced – the dirty bathwater has been carefully

removed and the regression will yield trustworthy estimates (Hosking 1981).

Our replication and exercises in G&L with data from Casillas, Enns, and Wohlfarth

(2011) is a good demonstration of these steps. Although the equation is initially unbalanced

(see Table C.5) fractionally differencing each series by its estimated d value makes for a

balanced equation and trustworthy hypothesis tests. Variables that we expect to affect

Supreme Court liberalism – Public Mood and Segal-Cover scores – prove to do so in Table

11. Pre-whitening has not white-washed the data clean of interesting relationships.21 On

the other hand, Table C.6 of the G&L Supplement shows that using FI methods fails to turn

up the nonsense impacts of Sharks, Tornadoes, and Beef Consumption seen in the GECM’s

LRMs in Table 10. Critics may point out that explaining plainly the meaning of a coefficient

with filtered variables is less straightforward but we argue that confidence in the results of

our hypothesis tests should trump ease of interpretation.

Testing for error correction is also possible within the FI framework and we suggest

following the three-step fractional cointegration approach demonstrated in Clarke and Lebo

(2003) and followed by Helgason (2015) (see also: Dueker and Startz (1998)). The use

of a fractional error correction mechanism (FECM) marries the logic of two-step Engle

and Granger (1987) cointegration testing with fractional differencing and, by relaxing strict

assumptions, is quite flexible.22 Assuming they are of similar orders of integration, the first

step – called the cointegrating regression – regresses Y on X just as in E&G’s first step. In

the second step, the residuals of the cointegrating regression are tested and, if found to have a

lower level of (fractional) integration, there is evidence of error correction (Box-Steffensmeier

21This is, of course, anecdotal evidence. Helgason’s (2015) simulations are especially useful for simulating
relationships between fractionally integrated variables including fractional cointegration. Investigating how
various models prevent Type II errors is important, but done rarely in this literature. Our quibble with
those simulations would be that the data are created to be unbounded and perfectly balanced, giving the
GECM a better chance for success that it would have with real-world data.

22Engle and Granger’s method requires that the initial series must be unit-roots and that the residuals of
a cointegrating regression must be level-stationary.
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and Tomlinson 2000). These residuals may still be autocorrelated and may require fractional

differencing in order to have trustworthy hypothesis tests in the next step.

In the third step, the filtered version of Y is regressed on the filtered version of X

and on the filtered and lagged fractional error correction mechanism; that is, we estimate:

∆dY Yt = α0 + α1∆dECMECMt−1 + β1∆dXXt + εt. Error correction implies a very close

relationship and may not appear even when X has short-term effects on Y . For example,

the data in G&L’s Table 11 failed to show signs of fractional cointegration in the cointegrating

regression and a FECM was not justified in the final model. An applied example that includes

a significant FECM is Lebo, McGlynn, and Koger (2007) which estimates yearly Democratic

Unity from 1789 to 2000 as (0, 0.69, 0), Republican Unity as (0, 0.78, 0), and Democratic Size

as (0, 0.75, 0). Regressing Democratic Unity on the latter two series creates an ECM vector

estimated as (0, 0.34, 0). The dependent variable, the independent variables, and the FECM

lagged one year are each differenced by their own value of d prior to the final regression.

Post-estimation, one should again check diagnostics such as the Durbin-Watson statistic.

Bollerslev, Osterrieder, Sizova, and Tauchen (2013) demonstrates impulse response functions

with a fractionally cointegrated VAR and these can be helpful in tracking the long-term

impacts of variables on each other. With good diagnostics, one can have confidence in the

results of the hypothesis tests for short- and long-term affects, the latter through the FECM.

When comparing FECM and GECM methods, worries about FI’s interpretability should

be weighed against the findings in G&L of the many factors that can affect the estimation

and interpretation of the GECM’s parameters. In the GECM, the estimation of α1 is affected

by the number of independent variables, the boundedness of the variables, and by the extent

of autocorrelation in the variables. Further, the interpretation of α1 is affected by the

researcher’s diligence in correctly performing the complicated post-estimation calculations.

Practitioners may have an easy time running the GECM – in a single line of Stata code, for

example – but it is not easy to arrive at the correctly interpreted and unbiased rate of error

correction. In part, this explains why we sometimes find authors explaining error correction
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rates above 100%. Except in the rare case where one uses the GECM with unbounded

and cointegrated unit-root series, the model’s α1 does not simply tell us the rate of error

correction. And, as we show in G&L, mistakes for the β parameters are also easy to make.

Conclusion

In sum, we remain skeptical that the GECM is a reliable model except in the very rare

case where one has unbounded unit-root variables that are cointegrated with each other.

Unbalanced equations are a key problem in the large body of work that has cited D&K.

With unbalanced equations, fractionally integrated data, or bounded time series the GECM

is prone to spurious results. With stationary data, the estimation of an error correction

rate provides little insight into the relationship between the variables. And interpretation

problems appear at many points in the process.

Overall, readers should be wary of strong findings coming from the GECM. The model

is just not as simple as it seems and not nearly as flexible as has been assumed. Although

estimated with a single line of code it is actually extremely difficult to discern just what the

results mean. And, often, researchers have taken raw output with impressive t-statistics at

face-value, misunderstood its meaning, and published seemingly compelling research.

Use of the GECM has certainly outpaced that of fractional integration methods. Key

reasons for this are misperceptions about the flexibility, ease of use, and ease of interpretation

for each. Since the FI approach can take disparate series and filter them to impose balance

and since the GECM runs into problems when it squeezes such series into the same equation,

it is the FI approach that is far more flexible. Also, ease of use is not only about the ability

to run a model – it also includes the ability to avoid misuse of it, to properly interpret the

output, and to have confidence that the inferences one makes from it are accurate. In these

respects we think FI methods – when appropriate – dominate the GECM and we hope that

this symposium sparks new interest in them. Failing that, we hope future GECM users pay

close attention to the issues raised here and are more careful in their use of the model.
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